
Performance Evaluation of Communication Software Systems for

Distributed Computing

Rod Fatoohi*

Report NAS-96-006, June 1996

Abstract

In recent years there has been an increasing interest in object-oriented

distributed computing since it is better quipped to deal with complex

systems while providing extensibility, maintainability, and reusability. At

the same time, several new high-speed network technologies have emerged

for local and wide area networks. However, the performance of network-

ing software is not improving as fast as the networking hardware and the

workstation microprocessors. This paper gives an overview and evalu-

ates the performance of the Common Object Request Broker Architecture

(CORBA) standard in a distributed computing environment at NASA
Ames Research Center. The environment consists of two testbeds of SGI

workstations connected by four networks: Ethernet, FDDI, HiPPI, and

ATM. The performance results for three communication software systems

are presented, analyzed and compared. These systems are: BSD socket

programming interface, IONA's Orbix, an implementation of the CORBA

specification, and the PVM message passing library. The results show

that high-level communication interfaces, such as CORBA and PVM, can

achieve reasonable performance under certain conditions.

*The author is an employee of MI:I2, Inc. Mailing address: Rod Fatoohi, Mail Stop T27A-1,
NASA Ames Research Center, Moffett Field, CA 94035, Ph. (415) 604-3486, Fax. (415) 604-3957,
E-mail: fatoohi@nas.nasa.gov. This work was funded through NASA contract NAS 2-14303.





1 Introduction

One of the most interesting emerging technologiesis Object-Oriented distributed
computing. Current technology basedon systemslike the Distributed Computing
Environment (DCE) and using the Remote ProcedureCall (RPC) mechanismsdo
not provide adequatesupport for building a real, complex,scalable,distributed com-
puting environment. For example,RPC doesnot provideexplicit support for moving
objects nor doesit handle distributed objects in a transparent manner. Also, de-
spite the fact that RPC is an important part of most distributed systemsincluding
the objected-orientedsystems,it is still a relatively low level interface to the dis-
tributed computingenvironment. The CommonObject RequestBroker Architecture
(CORBA) specificationprovidesthe mechanismsfor objectsto interact transparently.

Another emerging technologyis high-speednetworks. Emerging networks have
peaktransmissionratesof about onehundredmegabytesper second.Combinedwith
high connectivity (switched network), the aggregatenetwork bandwidth can reach
severalgigabytesper second.

The distributed object technologyalongwith high-speednetworks representtwo
key componentsof the-information infrastructure for next generation applications.
Theobject-orientedtechnologyprovidesthe extensibility,maintainability, and reusabil-
ity that areneededin softwareengineeringwhile the high-speednetwork technology
provides the required speedto transmit information betweensystems. These tech-
nologiesareessentialin manyapplicationssuchasmultimedia, virtual manufacturing,
digital library, air traffic control simulation,and virtual computing. At this time, it
is important to evaluatethesetechnologiesand identify their limitations sincesome
products, basedon these technologies,have started to appear in the commercial
market.

One of the few studies of the performanceof CORBA on high-speednetworks
is the work by Schmidt et al. [9] where they compared the performanceof BSD
socketsand two implementationsof CORBA (Orbix from IONA Technologiesand
ORBeline from Post Modern Computing) over Ethernet and ATM networks using
two SPARCstations.They showedthat CORBA basedimplementationsof ttcp were

slower than BSD sockets implementations. Also, they reported good results using the

ACE toolkit.

This is the first step in evaluating distributed systems and analyzing different

components of these systems. Here the emphasis is on examining the performance

of communication software systems under different conditions and identifying factors

that influence their performance. The communication tests were chosen to study

such factors as: message size, socket buffer size, and data type. Two communication

systems are considered here: Orbix, an implementation of the CORBA specification,

and the PVM message passing library. The performance results from these two

systems are compared to the results obtained from using the BSD socket programming

interface.

There are many similarities and differences between CORBA and PVM. Both

CORBA and PVM are based on the BSD socket programming interface. Also, both

systems consist of communication libraries and a run time system (daemon). In ad-

dition, both systems can be configured to run on a single processor, for testing and



debugging, as well as on heterogeneous platforms of different machines and networks.

Moreover, both systems can be used as high-level network programming interfaces

for building a large distributed system. Finally, both systems provide similar func-

tionalities in moving data, except that PVM is richer in group communication.

The main differences between PVM and CORBA is that PVM, like DCE, is based

on a procedure-oriented distribution model while CORBA is based on an object-

oriented distribution model. Also, PVM was designed for networks of workstations

as well as parallel computers while CORBA was designed for distributed computing

using a client/server model. Both systems, with certain modifications and added

services, can work in both environments. Despite these differences, a study of these

systems would give an insight of the performance issues that users might face.

Experiments were performed on two testbeds consisting of Silicon Graphics, Inc.

(SGI) workstations connected by four networks at the Numerical Aerodynamic Sim-

ulation (NAS) Systems division at NASA Ames Research Center. These networks

are: a 10 Mbits/s Ethernet, a 100 Mbits/s FDDI, an 800 Mbits/s HiPPI, and a 155

Mbits/s ATM.

The paper starts with an overview of CORBA and PVM. Followed by a brief

description of the hardware platforms and the networks. Next, the performance

results for the three communication software systems are presented and modeled.

Finally, we offer some concluding remarks.

2 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard for trans-

parent communication between application objects being developed by the Object

Management Group (OMG) [4, 10, 11]. The OMG is an organization of over 600

software vendors and users involved in the development of object technology for

distributed computing systems. The OMG does not produce any software, only spec-

ifications which come from OMG members who respond to Requests for Proposals.

In 1990, the OMG introduced an architecture for inter-operability of object ori-

ented applications called the Object Management Architecture (OMA). The OMA

consists of four components: Object Request Broker (ORB), Object Services, Com-

mon Facilities, and Application Objects. The OMA object model is a client/server

model where the servers are objects that provide services to clients. The clients obtain

services by invoking operations on server objects.

The ORB, a key piece of the OMA, is a mechanism that provides transparency

of object location, activation, and communication. It also provides interoperability

between applications in heterogeneous distributed environments. Object Services,

which sit closer to the ORB, provide basic services for using and implementing ob-

jects. Common Facilities, which sit closer to the user, provide some generic functions

for specific requirements. Unlike Object Services, Common Facilities are optional.

Finally, Application Objects are objects specific to certain applications, which may

be built from other objects such as Object Services and Common Facilities.

The CORBA specification, introduced in 1991, describes the interfaces and ser-

vices that ORBs must have; i.e., CORBA is basically the technology adopted for



ORBs. CORBA provides a clean model where the interface of an object and its

underlying implementation are separated; clients do not need to know how or where

servers are implemented. Server objects are visible only through interfaces and object

references. Interfaces describe the services provided by an object and object refer-

ences identify objects. An ORB uses object references to identify and locate objects

to forward requests to them.

The CORBA specification has several components: ORB Core, Interface Defi-

nition Language (IDL), Dynamic Invocation Interface (DII), Interface Repository,

and Object Adapters. The CORBA 2 specification, introduced in late 1994, added

more components, mainly in inter-ORB interoperability of ORB implementations

from different vendors and the Dynamic Skeleton Interface (DSI). The DSI provides

a run-time binding mechanism for servers.

The ORB Core handles requests for remote objects. It uses object references to

locate objects, activates them (if they are not already active), delivers the request to

them, transfers control to them, and finally returns any output values to the client.

IDL is a declarative language for describing the interfaces of CORBA objects with

a syntax resembling that of C++. It is a subset of C++ with C++ implementation

constructs removed and with extensions for distributed programming. It supports

multiple interface inheritance. IDL interfaces contain attributes and operations used

to define services provided by objects. An IDL compiler maps IDL constructs into

a specific programming language (such as C++ or C) based on CORBA language

bindings. The compiler generates the client and server code, called client stubs and

server skeletons, needed to implement the interface.

In the IDL to C++ mapping, each interface is mapped into a C++ class while

each operation is mapped into a C++ member function. Each read-write attribute

is mapped into two member functions (get and set) whereas each read-only attribute

is mapped into a get function only.

Interface operations may be invoked either statically through the compiler gener-

ated stubs or dynamically through DII. The DII is a mechanism for clients to make

calls on objects with no compile-time knowledge of their interfaces. It is usually more

flexible but more complicated and less efficient than the static invocation interface

(through client stubs).

The Interface Repository provides persistent storage for IDL interface declara-

tions. It provides run-time information about the interface properties of objects.

The Object Adapters provide the means for object implementations to access ORB

services. Among these services are object reference generation, object operation in-

vocation, activation and deactivation of objects, and security. CORBA specifies that

a standard adapter called the Basic Object Adapter (BOA) should be provided by

every ORB.

Object invocation in CORBA can be done synchronously (blocking), asynchronously

(non-blocking), or one-way (best-effort). In a synchronous communication, the sender

sends a request and waits until the request either completes or fails. In an asyn-

chronous communication (called deferred synchronous communication in CORBA

terminology), the sender sends a request and proceeds with other work (does not

wait) but it must check periodically for a response. Asynchronous communication

3



is supported under the DII only. In a one-way communication, the sender sends a

request and proceeds with other work without checking for a response. Here the
receiver does not return a value to the sender.

3 Orbix

Orbix is a library based implementation of the CORBA specification from IONA

Technologies Ltd [5]. It is implemented mainly by two sets of libraries (client and

server libraries) and a daemon, orbixd. The server library can send and receive remote

object requests while the client library can only send requests. The daemon needs to

run on the server's host side so it can start server processes dynamically. Orbix also

has an IDL compiler, Interface Repository and many utilities. The Orix IDL compiler

generates a C++ class for an IDL interface to be used by client programs. The Orbix

communication classes are implemented using TCP/IP, XDR, and a simple message

protocol.

Orbix runs on MS Windows as well as several Unix platforms, including Sun

Solaris, SGI IRIX, IBM AIX, HP UX, and DEC Ultrix. The implementation tested

is Orbix version 1.3.3.

4 Parallel Programming System: PVM

The Parallel Virtual Machine (PVM) is a collection of public-domain system software

routines that enables parallel processing on a network of heterogeneous computers as

well as parallel computers [2]. It is composed of two parts: a run time system (dae-

mon) that resides on all of the computers participating and a set of user interface

primitives that can be incorporated into a C (or Fortran) code. This includes prim-

itives for process control, message passing, and synchronization between processes

running on different machines.

PVM daemons communicate with one another through UDP sockets while a PVM

task communicates with its daemon over a TCP connection. Also, PVM tasks can

communicate with each other by establishing a direct TCP link between the tasks.

Our implementation is based on PVM version 3.3.10 using a direct TCP link between

PVM tasks.

PVM supports both synchronous and asynchronous communication forms. In

addition to these point-to-point types of communication, PVM supports group com-

munication such as multicast, to a set of tasks, and broadcast, to a user defined group

of tasks.

5 Test Platforms

Two platforms were used for this study: a cluster of SGI workstations, called DaVinci,

and two SGI workstations connected by an ATM switch, called here the ATM testbed.

The DaVinci cluster consists of nine (one front end system and eight compute nodes)

SGI Power Challenge machines with MIPS R8000 CPUs. The front end is a four-cpu

75 MHz shared-memory node thus serves as the compile server, file server, user home



server, and others. The eight compute nodes (four single-cpu 75 MHz nodes, two

eight-cpu 90 MHz shared-memory nodes, and two ten-cpu 90 MHz shared-memory

nodes) are connected via Ethernet, FDDI, and HiPPI. In addition, all nodes have

ATM network interfaces, however, the ATM drivers are not currently ready for use.

Each of the single-cpu nodes has 128 Mbytes of memory while each of the multiple-

cpu shared-memory nodes has either 2 Gbytes or 4 Gbytes of main memory. Only the

single-cpu nodes were utilized in this study. All nodes are currently running SGI's

IRIX 6.2 operating system, which is a 64-bit UNIX operating system.

The ATM testbed consists of two SGI Indigo2 machines with a single-cpu 200

MHz MIPS R4000 processor and 128 Mbytes of main memory. The two machines,

each has a Fore ESA-200E ATM OC-3 EISA bus adaptor, are connected directly to

each other with no switch in between. The ATM performance is limited by the 80

Mbits/s EISA bus. The two machines are currently running SGI's IRIX 5.3 operating

system.

Briefly, Ethernet is a 10 Mbits/s broadcast bus technology while Fiber Distributed

Data Interface (FDDI) is a 100 Mbits/s fiber optic token ring network. Both Ethernet

and FDDI are connectionless networks. The maximum frame size for Ethernet is

1500 bytes while the maximum frame size for FDDI is 4500 bytes. High Performance

Parallel Interface (HiPPI) is a point-to-point link that uses twisted-pair copper cables

with a maximum length of 25 meters and a transfer rate of 800 Mbits/s. HiPPI

is a connection-oriented network that uses variable sized packets up to 64 Kbytes.

Asynchronous Transfer Mode (ATM) is a connection-oriented protocol that uses fixed

length cells of 53 bytes, with 48 bytes of payload. ATM uses an adaptation layer to

frame ATM cells into 9180 byte frames. Both HiPPI and ATM are switched networks

while Ethernet and FDDI are shared medium networks. However, both Ethernet and

FDDI have switching technology available.

6 Performance Results: BSD Socket Interface

Several communication tests were performed on the two platforms using two C pro-

grams: ttcp and bench. Both programs use BSD sockets. The ttcp program measures

point-to-point data transfer throughput using either TCP or UDP protocols. It uses

bulk transfer where the data flows in one direction while the sender sends a prespec-

ified number of messages. It has many options including: message size, socket buffer

size, number of messages, and setting TCP_NODELAY (which controls buffering in

sending data). In this work, ttcp was chosen to measure throughput using TCP with

TCP_NODELAY disabled (by default).

The bench program [7] implements two types of tests: bulk transfer and round-

trip. In a bulk transfer, which is similar to ttcp, a number of messages are transferred

back to back through the network. When the transfer completes, the receiver sends a

single message back to the sender for acknowledgement. In a round-trip test, messages

are sent (one at a time) from one machine to another, then echoed back. In this work,

the round-trip test was chosen to measure latency with UDP because of the simple

nature of the protocol.

The throughput measure (using ttcp) was conducted for different message sizes

5



and socket buffer sizes. The message size was varied (through doubling) from 1 to 64

Kbytes. Two socket buffer sizes (8 and 64 Kbytes) were considered, except for HiPPI

where 1 Mbytes buffer size was also considered since a previous work [1] showed that

HiPPI needs a large buffer to achieve good performance. Each test was run for at

least 20 seconds to produce reliable data. All measurements were obtained under

conditions of light network traffic. However, we noticed some fluctuations in the

timing results.

Figure 1 shows the performance results using BSD sockets for the following net-

works: Ethernet, FDDI, HiPPI on DaVinci and ATM on the ATM testbed using 8,

64 and 1024 (HiPPI only) Kbytes socket buffer sizes. The best achieved performance

results are with HiPPI especially with the 1 Mbytes socket buffer where it outper-

formed both ATM and FDDI by an order of magnitude and Ethernet by two orders of

magnitude. Performance differences between FDDI and ATM are within 30% where

FDDI outperformed ATM for the larger buffer size while the latter outperformed the

former for the smaller buffer.

Figure 1 results also show that better performance was achieved using the larger

buffer size, except for Ethernet where the 8K results outperformed the 64K results

by over 20%. The impact of the buffer size is more significant for HiPPI where high

performance was achieved only using large buffer size (1 Mbytes) and large messages

(16 Kbytes and larger). The differences in performance between the 8K and 64K
socket buffer results are more than a factor of two for FDDI while it is less than

that for ATM. The impact of the socket buffer size can be attributed to the TCP

window size since TCP breaks up the data into segments. Larger window sizes allow

the transmission of multiple TCP segments (fill the pipe) before an acknowledgement

arrives.

A simple linear regression model was developed for the ttcp results. The model

is based on the following equation: T = b0 + bl * m, where T is the predicted

cost for a message of length rn, bo is the intercept of the line, and bl is the slope. For

round-trip measurements, b0 could be considered as the cost of a zero-byte message

but for bulk transfer, as in ttcp, bo has no real meaning. The inverse of bl is the

maximum achievable throughput, rm_x, for that test. The goodness of a regression

is measured by the coefficient of determination, R 2. The higher the value of R 2, the

better the regression; for a perfect model R 2 is 1.

The regression coefficients b0 and bl are estimates for a single test. In order to

obtain better estimates, the 90% confidence intervals for bl and rm_, are computed

[6]. The meaning of the 90% confidence intervals for rm_, for example, is that we can

state with 90% confidence that the maximum achievable throughput of a network is

between two values and the chance of error in this statement is 10%.

Table 1 lists the values of rm_,, the 90% confidence intervals for r_x, and R 2

obtained from applying the regression model on the observed results of Figure 1 for

the specified buffer sizes. The values of R 2 show that the predicted results matched

the observed results very well. Table 1 also shows the startup latency, t0, and the half

performance length, nl/2. The startup latency is the time required to send a message

of minimum size and was measured using the round-trip test of the bench program

(using an eight-byte message). The half performance length is the message size needed



Table 1" Network parametersusing ttcp/C
Network

Ethernet
FDDI
HiPPI
ATM

rmax

(Mbits/s)

8.3

89.4

716.5

70.0

rm_x 90% confidence

intervals (Mbits/s)

.R 2
nl/2

(Bytes)

8.3, 8.3 1.000 14

88.5, 90.4 1.000 740

710.2,722.8 1.000 9826

69.6, 70.4 1.000 364

_0

(,sec)
55O

561

593

360

buf size

(Kbytes)

8

64

1024

64

to achieve half of rm_ and is computed from Figure 1 with some approximation since

data was not collected for M1 message sizes.

The results of Figure 1 and Table 1 show that Ethernet, FDDI, HiPPI, and ATM

have achieved over 80% of their peak rates provided that the limiting factor for the

ATM performance is the EISA bus.

The nl/2 measure shows that Ethernet is very efficient even with very small mes-

sages due to the fact that Ethernet is a mature technology and its software has been

well optimized. On the other hand, HiPPI needs about a 10 Kbyte message to achieve
half of its maximum achievable rate. The to results showed that latency is the smallest

for ATM while it is about the same for the other networks.

7 Performance Results: CORBA/Orbix

Performance of Orbix version 1.3.3was measured using two Orbix programs: ttcp/Orbix

and timer. The program ttcp/Orbix [9] is a modified version of ttcp which replaces

all C socket calls with stubs and skeletons generated from two CORBA IDL defi-

nitions for messages: sequence and string. Unbounded IDL sequences are basically

dynamically sized arrays while a string is a sequence of char. This program, like ttcp,

measures the bulk transfer rate of a network for different message sizes and socket

buffer sizes, since Orbix provides a mechanism to change the buffer size through a

user-defined call back function. For more details about the code, see [9].

The timer program, originally written by Mokkapati [8], measures both bulk trans-

fer and round-trip rates for different data types. This program was modified to mea-

sure the round-trip time for a zero-length message and throughput for variable length

data types.

Figure 2 shows the performance results for the four networks under Orbix using

8 and 64 Kbytes socket buffer sizes. The message size was varied (through doubling)

from 1 to 64 Kbytes. All results are for messages of type sequence since sequence

outperformed string for all our tests. This can be attributed to differences in their

IDL to C++ mappings since, unlike the IDL sequence mapping, the string mapping

does not include a length field so strlen is done on both sides during marshalling and

demarshalling data.

Figure 2 results show that, similar to the BSD sockets results, performance with

the 64 Kbytes buffer is consistently higher than using the 8 Kbytes buffer for all

networks except Ethernet where the latter outperformed the former by more than

7



Table 2: Network parameters using ttcp/Orbix (64 Kbytes buffer size)
Network

Ethernet

FDDI

HiPPI

ATM

rmax

(Mbits/s)

6.3

77.3

130.3

54.4

rm_ 90% confidence

intervals (Mbits/s)

R 2

6.3, 6.3 1.000

73.3, 81.8 0.996

119.3,143.5 0.993

50.6, 58.7 0.993

nl/2 to

(Bytes) (_sec)

206 1621

5763 1628

7811 1672

3670 1166

20%. The HiPPI performance under Orbix peaked at around 100 Mbits/s using a

32 Kbytes message and a 64 Kbytes buffer and then dropped significantly for larger

messages and buffer sizes (not shown in the figure). As in BSD sockets, HiPPI

outperformed other networks under Orbix but by smaller factors than with BSD

sockets. Also FDDI outperformed ATM by about the same margin as for BSD sockets

using a 64 Kbytes buffer.

A linear regression model, similar to the BSD sockets model, was developed for

the Orbix results. The results of applying the model for the 64 Kbytes buffer are

listed in Table 2. Also, the startup latency and the half performance length, defined

in the previous section, are given in the table. The latency was computed using

the round-trip test of the timer program (zero and one byte messages). The half

performance length was computed from Figure 2 with some approximation.

The results of Figure 2 and Table 2 show that Ethernet, FDDI, and ATM under

Orbix achieved over 70% of their peak rates while HiPPI achieved only 16% of its

peak rate. The problem with HiPPI is that it needs large buffer sizes to run efficiently

and that could not be achieved under Orbix. Latency under Orbix is about three

times that of the BSD sockets for all networks. Also, the half performance length is

higher under Orbix than using the BSD sockets.

A comparison between Orbix and BSD sockets results for the same socket buffer

size shows a drop in performance of up to a factor of three depending on the message

and socket buffer sizes. The values of r,,_ for FDDI, HiPPI, and ATM under Orbix

are about 70% to 85% of their values under BSD sockets for the same socket buffer

size whereas the differences are insignificant for Ethernet.

The CORBA overhead can be attributed to many factors, including: data copying,

presentation layer conversion, demultiplexing, and memory allocation [9]. The UNIX

profiler profwas used to give some insight to the sources of CORBA overheads. The

pro]: program gives some estimates of the amount of time spent in every function of

a program. Even though the profresults were not conclusive and some abnormality

was observed, it was noticed that a reasonable percentage of the execution time was

spent in memcpy. This shows that there were many memory copy operations and the

IDL stubs and sequences may copy data several times.

Table 3 shows performance variations under Orbix for transferring sequences of

struct and charusing the timer program. In IDL, as in C and C++, a struct data type

allows related data types to be packaged together. These results show that the use of



Table 3: Network performance
Network

Ethernet
FDDI
HiPPI
ATM

'in Mbits/s) using Orbix (16 Kbytes
bulk transfer

char struct

6.7 5.4

84.4 15.6

84.0 t4.3

60.0 18.0

round-trip

char struct

7.4 4.4

41.1 9.5

65.7 11.0

39.6 11.5

message size)

Table 4: Network parameters using ring/PVM.

Network

Ethernet

FDDI

HiPPI

ATM

rmax

(Mbits/s)

8.4

70.0

102.7

26.8

rma_ 90% confidence

intervals (Mbits/s)

R 2

8.4, 8.4 1.000

66.5, 74.0 0.997

94.0,113.1 0.990

25.6, 28.2 0.987

nl/2 to

(Bytes) (#sec)

544 830

12098 942

9278 854

1419 602

struct, instead of char, caused a significant performance drop for all networks using

both bulk transfer and round-trip communications. This drop is due to the overhead

in marshalling and demarshalling structs under Orbix. This was also observed in [3]

using SPARCstations.

8 Performance Results: PVM

Performance of the four networks under the PVM message passing library version

3.3.10 was measured using a C program, called ring; see [1] for more details. In ring,

the processors form a ring where each processor receives a message of prescribed

length from a previous processor and sends the same message to the next processor.

Only one message goes around the ring at any given time. This program measures

point-to-point performance and latency of a network.

Figure 3 shows the performance results for the four networks under PVM for

message sizes ranging between 1 and 64 Kbytes. Under PVM, HiPPI outperformed

the other networks but both HiPPI and ATM achieved only small fractions of their

peak rates. The ATM performance under PVM peaked at around 25 Mbits/s using

a 16 Kbytes message and then dropped significantly for larger messages (not shown

in the figure).

A linear regression model, similar to the BSD sockets and Orbix models, was

developed for the PVM results. Table 4 lists the results of applying the model on

the PVM results. The half performance length is relatively long for FDDI and HiPPI

compared to Ethernet and ATM. Latency under PVM is less than 1 msec for all

networks. It is below the latency under Orbix.



Performance of PVM is slightly below Orbix for FDDI and HiPPI while it is signif-

icantly below Orbix performance with ATM. One of the reasons for these differences

is the ability to change the socket buffer size under Orbix while it is hard to change
it under PVM.

The PVM overhead can be attributed to many factors, including: buffer manage-

ments, connection management, and state maintenance. These overheads are more

apparent in new networks (such as HiPPI and ATM) than in traditional networks.

9 Concluding Remarks

High-level network programming interfaces, such as CORBA, provide many advan-

tages over low-level, non-typesafe programming interfaces, such as the BSD sockets.

Among these advantages are extensibility, maintainability, and reusability. These

high-level interfaces have been traditionally less efficient than the low-level inter-

faces, especially on high-speed networks. This study showed that might still be the

case but reasonable performance can be achieved. Also, users might be willing to

accept certain performance penalty given all the benefits they are gaining from using

these high-level interfaces. However, users have to be aware of some of performance

restrictions that are associated with the use of certain data types. For example, the

use of IDL strings as well as structs carries some performance penalties compared to

the use of sequences and chars.

Performance differences between CORBA and PVM are not quite significant. The

choice between the two depends on many other factors including the programming

model, whether it is procedure-oriented or object-oriented. Their performance on

high-speed networks suffer due to software overheads. However, performance of high-

level interfaces is not fixed - it keeps improving. There have been many studies in

how to improve communication software, such as compiler optimization techniques

and using light-weight protocols. Some of these optimizations are being utilized in

commercial network interfaces and operating systems.

The emphasis of this study is performance at the communication level. More

work needs to be done using real applications to have a better understanding of the

limiting factors of communication software at the application level.

Acknowledgment

I would like to thank Sandra Johan of NASA Ames and Noemi Berry of MR J, Inc.

for many technical discussions about CORBA and ATM. I am also thankful to IONA

Technologies Ltd. for providing me with an evaluation copy of Orbix 1.3.3.

References

[1] Fatoohi, R., Performance Evaluation of Communication Networks for Distributed

Computing, in the Proceedings of the Fourth International Conference on Com-

puter Communications and Networks (Las Vegas, 1995), IEEE Computer Society

Press, pp. 456 - 459.

10



Also in URL: "http://www.nas.nasa.gov/NAS/TechReports/NASreports/NAS-

95-009/NAS-95-009.html"

[2] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sun-

deram, V., PVM 3 User's Guide and Reference Manual. Report ORNL/TM-

12187, Oak Ridge National Lab., Oak Ridge, TN, September 1994. Also in URL:

"http://www.epm.ornl.gov/pvm"

[3] Gokhale, A., Schmidt, C., Cytron, R., and Varghese, G. Compiler Optimization

Techniques for Improving Performance of Distributed Object Computing Frame-

works over High-speed ATM Networks, In the Software Technology Conference,

(Salt Lake City, 1996). Also in URL: "http://www.cs.wustl.edu/_ schmidt"

[4] Information Resources on CORBA and the OMG, URL:

"htt p://www.acl.lanl.gov/CORBA"

[5] IONA Technologies, The Orbiz Architecture, IONA Technologies Ltd., Dublin,

Ireland, January 1995. Also in U RL:

"http: / /www.iona.com:8OOO /www / Orbix / arch / Summary.html"

[6] Jain, R., The Art of Computer Systems Performance Analysis, Wiley & Sons,

Inc., 1991.

[7] Keeton, K., Anderson, T., and Patterson, D., LogP Quantified: The Case for
Low-Overhead Local Area Networks. In Proceedings of HOT Interconnects III,

Stanford, CA, August 1995.

[8] Mokkapati, R., Post Modern Computing, Mountain View CA 94043.

[9] Schmidt, C., Harrison, T., and Al-Shaer, E., Object-Oriented Components

for High-speed Network Programming, In the Proceedings of the Conference

on Object-Oriented Technologies, (Monterey, 1995), USENIX. Also in URL:

"http: / / www. cs.wustl, edu/" schmidt"

[10] Vinoski, S., Distributed Object Computing With CORBA, C++ Reports Maga-

zine, July/August 1993.

[11] Yang, Z., and Duddy, K., Distributed Object Computing with CORBA,

Technical Report 23, Distributed Systems Technology Centre, The Uni-

versity of Queensland, QLD 4072 Australia, June 1995. Also in URL:

"http://www.dstc.edu.au/AU/research-news/omg/corba.html"

11



©

Z

.vm(

i I

N
°_--I

r_

r_

(s/sl!qIAI) mdtI_nont£

12



©

,4,,,a

_D

B

'+; ' +
t t I

X_,l,?
I

I Ii
I

I Ii
I

I Ii

oX

(s/m!qIAI) mdq_noaqj_

_D

,.O

_D
t_

c,g3

CJ3

13



Z

|

9 •
I

I

I

I

I

I

I

I

I

I

I

I

|

I

(s/sl!qIAI) lndqi_no_z

N

¢/)

14



NAs

'_'_'_'_'__,_ _'_ Author(s):
I',,o C4iiiii_iiiii!_i!!i_G_i::i::i::i_::iiiiii_'_ii::iii_ii::i_!_!i!::iiiiii_ili!iii

::I_::_i:.:.ii_iii::::::giig_iii::i::::::_i::::::i:::.i@::_ii_::ii::iii_::ili!::i::_i_!ii:ii::::

::i:::.ii::i:.iii::i::i::::::::i::ii!ii_i!_::i:.G_::::i!i:::-i_i_::ii_f:!_i::_!!_i:._ii:.ii::::i

!

g'aCooh,

NAS ReportNumber:

M&_- '_6-0o 6




